Theorem (Schwartz Lemma).
Let $f \in \bar{A}(\mathbb{D}),|f(z)| \leq 1 \quad \forall z \in \mathbb{D}, f(0)=0$.
Then $\forall z \in \mathbb{D}|f(z)| \leq|z|$ and $\left|f^{\prime}(0)\right| \leq 1$.
If for some $z \in|D| \cos |f(z)|=|z|$ or $\left|f^{\prime}(0)\right|=1$
then Jo: $f(z)=e^{i \theta} z$. (f is a rotation by 9).
Proof. Let $\varphi^{(z)}:=\left\{\begin{array}{l}\frac{t(z)}{2}, \\ t^{\prime}(0), z \neq 0 \\ l^{2}, z=0\end{array}\right.$
Then $\left.\varphi \in A(\mathbb{D} \mid\{0\}), \lim _{z \rightarrow 0} \varphi(z)=\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z}=f^{\prime} 0\right), 50 \quad \phi \in A(D)$.
Take $r<l$. Then, by maximum Principle, $\forall z:|z|<r$.
$|\varphi(z)| \leq \max _{|z|=r}|\varphi(z)|=\max _{|z|=r} \frac{|f| z| |}{r} \leqslant \frac{1}{r}$
So $\forall z:|z|<1$ we have $\left|\varphi_{|z|=r}^{|z|=r}\right| \leq 1=\left|\frac{\mid f(z)}{z}\right| \leq 1$
If for some $z,|\varphi(z)|=1 \quad\left|f^{\prime}(0)\right| \leq 1$
then lelreaches maximum at z, so $\left|f^{\prime}(0)\right|=1, z=0$)
$\varphi(z)=$ cost. 1 coast $1 \Rightarrow$ cons $=e^{\text {is }}$
$\frac{f(z)}{z}=e^{i d}=$

Georg Pick
An invariant form of Schwartz Lemma.
Theorem. (Schwarz-Pick).
Let $t \in A(\mathbb{D}), \quad f: \mathbb{D} \rightarrow \mathbb{D}$ (ie. $\forall z \in \mathbb{D} ;|f(z)|<1)$.
Then $\forall z_{1}, z_{2} \in \mathbb{D}$

$$
\forall z \in \mathbb{D}
$$

$\frac{\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|}{\left\lvert\, 1-\overline{f\left(z_{1}\right) f\left(z_{2}\right) \mid} \leq \frac{\left|z_{1}-z_{2}\right|}{\mid 1-\overline{z_{1} z_{2} \mid}}\right. \text { and } \frac{\left|f^{\prime}(z)\right|}{\left|-|f(z)|^{2}\right.} \leq \frac{1}{\left|-|z|^{2}\right.}}$
If the equality is reached for some $z_{1}, z_{2} \in \mathbb{D}$, or tor some $z \in \mathbb{D}$,
then f is a Mobins transformation $D \rightarrow \mathbb{D}$
Proof
For $w \in \mathbb{D}$, denote $\quad S_{w}(z)=\frac{z-w}{1-\overline{w z}} \quad S_{w}(w)=0$ Consider the map $g(z):=S_{f(2,)}$ of o $S_{z \text { i. }}^{-1}$. Then $g(0)=S_{f(z,)} 0+0 S_{z=1}^{-1}(0)=S_{f\left(z_{1}\right)} f\left(z_{1}\right)=0$, and $g: \mathbb{D} \rightarrow \mathbb{D}$ So, by Schwart lemma: (since each map toes itt.
$\left|S_{f\left(z_{1}\right)} 0+0 S_{z_{1}}^{-1}(z)\right| \leq|z| \quad \forall z \in \mathbb{D}$. Tate $z=S_{z_{1}}\left(z_{2}\right)=\frac{z_{2}-z_{1}}{\mid\left(1-z_{1} z_{2}\right)}$
Then $S_{2,1}^{-1}(z)=z_{2}, \quad S_{f(z,)} f \circ S_{z_{1}}^{-1}(z)=S_{f\left(z_{1}\right)}\left(f\left(z_{2}\right)\right)=\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{1-f\left(z_{1}\right) f\left(z_{0}\right)}$
So it implies the inequality.
Rewrite it: $\frac{\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|}{\left|z_{1}-z_{2}\right|} \leqslant \frac{\left|1-\overline{f\left(z_{1}\right)} f\left(z_{2}\right)\right|}{\mid 1-\overline{z_{1} z_{2} \mid}}$
Let $z_{2} \rightarrow z_{1}$ to get the second inequality.
Finally, equality is reached in any ot the inequalities \Longleftrightarrow
$|g(z)|=|z|$ for rome z or $\left.\right|^{\prime}(0)|=| \Leftrightarrow g(t)=e^{i s} z \Leftrightarrow$

$$
f=S_{f(2,1)}^{-1} 0 y \cdot S_{z_{1}}-M_{0} \text { Lias } .
$$

Def. $\rho\left(z_{1}, z_{2}\right):=\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|=\sqrt{\left\langle z_{1}, \frac{1}{z_{1}}, z_{2}, \frac{1}{\bar{z}_{2}}\right\rangle}$
quasiny perbolic metric
Möbins maps fixing circle preserve:

1) Cross ratio.

21 Points symmetric with respect to the unit circle.
So they preserve ρ : it $t=e^{i \theta} \frac{z-a}{1-\bar{a} t}$ then $\rho(t(z), f(z))=$,
Why is ρ metric?
$\rho\left(z_{1}, z_{2}\right)=\rho \Leftrightarrow \quad z_{1}=z_{2}$ obvious
$\rho\left(z_{1}, z_{2}\right)=\rho\left(z_{2}, z_{1}\right)$
$\rho\left(z_{1}, z_{2}\right)+\rho\left(z_{2}, z_{3}\right) \geqslant \rho\left(z_{1}, z_{3}\right)$.
Mobbing -in variant, so map z_{2} to $0, z_{1} \quad t_{0} \quad r>0$
Then $\rho(r, 0)=r, \quad \rho\left(z_{y}, \rho\right)=\left|z_{3}\right|, \quad \rho\left(r, z_{3} \left\lvert\,=\frac{\left|r-z_{5}\right|}{\left|1-r z_{3}\right|}\right.\right.$
For fixed r, the image of the circler $\mid\left\{|z|=\left|z_{3}\right|\right\}$ under $S(z)=\frac{V-z}{1-r z}$
a circle Gymmetric wot $|R, \quad| S\left(\left|z_{3}\right|\right)\left|=\left|\frac{r-\left|z_{3}\right|}{1-r \mid z_{3}}\right| \leqslant r+\left|z_{3}\right|\right.$
$\xrightarrow[|r+| z_{3}]{1+r|z|} \int_{\frac{r-\left|z_{1}\right|}{|-r| z_{1} \mid}}^{S\left(\left\{|z|=\left|z_{3}\right|\right)\right.} S\left(-\left|z_{3}\right|\right)=\frac{r+\left|z_{3}\right|}{1+r\left|z_{3}\right|} \leq r+\left|z_{3}\right|$
$\xrightarrow[\frac{r+\left|z_{3}\right|}{1+r\left|z_{3}\right|}]{ } \int_{\frac{r-\left|z_{3}\right|}{1-r\left|z_{3}\right|}} \quad$ So $\quad \frac{\left|r-\left|z_{3}\right|\right)}{\frac{\left|1-r z_{3}\right|}{\left|1+\left|z_{3}\right|\right.}} \leq r+\left|z_{3}\right|$.

Theorem. Let $f \in A(D), f: I D \rightarrow D$-bijection.
Then f is a Möbius map.
Proof. $\forall z_{1}, z_{l} \in \mathbb{D}$

$$
\rho\left(f\left(z_{1}\right), f\left(z_{2}\right)\right) \leqslant \rho\left(z_{1}, z_{2}\right)
$$

Bat $f^{-1}: \mathbb{D} \rightarrow \mathbb{D}$, analytic
So $\left.\rho\left(z_{1}\right)^{z_{2}}\right)=\rho\left(f^{-1}\left(f\left(z_{1}\right)\right), f^{-1}\left(f\left(z_{2}\right)\right)\right) \leq \rho\left(f\left(z_{1}\right), f\left(z_{c}\right)\right)$.
So $\rho\left(z_{1}, z_{2}\right)=\rho\left(f\left(z_{1}\right), f\left(z_{2}\right)\right) \Rightarrow t$ is Möbius.
Corollary. ρ is invariant under all conformal bijections of D to itself.

Hyperbolic metric
How tog, measure the length of curve?
$l(\gamma)=\int_{a}^{l}\left|z^{\prime}(t)\right| d t$ How to measure it.
Know: under Möbius, $\frac{\left|f^{\prime}(z)\right|}{1-|f(z)|^{2}}=\frac{1}{1-|z|^{2}}$. By Schwarz-Pice.

$$
\text { for any } f \in A(\mathbb{D}), f: D \rightarrow \mathbb{D}
$$

Deft. Hyperbolic length of a path

$$
\frac{\left|t^{\prime}(z)\right|}{1-|f(z)|^{2}} \leq \frac{1}{1-|z|^{2}}
$$

Let γ be a piecewise sitterentiable arc, parametrized by $z(t), t \in(a, b]$.
$l_{H}(\gamma)=\int_{a}^{b} \frac{2\left|z^{\prime}(t)\right|}{1-|z(t)|^{2}} d t=\int_{j} \frac{2|d z|}{1-|z|^{2}}$
Restatement of Schwarz-Pick:
For any curve $\gamma \subset \mathbb{D}$ and any $f: I D \Rightarrow D$ - analytic
$l_{H}($ for $) \leq l_{H}(\gamma)_{6}$ If the equality is reached for one curve, then t is μ_{0} bins. It f is Möbies, thou $\forall \gamma: l_{t-1}(f 0 \gamma)=l_{1-1}(\gamma)$.
Proof. $\frac{\mid f^{\prime}\left(z(t) \mid\left(z^{\prime}(t) \mid\right.\right.}{1-\mid f\left(\left.z(t)\right|^{2}\right.} \leq \frac{\left|z^{\prime}\right| t| |}{1-|z| f| |^{2}}$. Equality for one point $\begin{aligned} & \text { Equality for all points }(\Leftrightarrow)\end{aligned}$

$$
f \text { is } M_{0}{ }^{\circ} \text { bins }=
$$

Deft. Hyper bolic dis stance between z_{1}, z_{2} : $d_{H}\left(z_{1, z_{2}}\right)=\inf \quad l_{H}(\gamma)$

$$
\begin{aligned}
& \gamma_{t}+f_{10 m} z_{1} \\
& t o z_{2}
\end{aligned}
$$

Theorem $d_{H}\left(z_{1}, z_{2}\right)=$

Prot. Every thing (LHS, RHS, circles orthogonal to $\{171=1\}$
are M_{0} bias invariant.
So re can map z_{1} to $0, z_{2}$ to a positive number $r>0$.
Consider any path from 0 to $\mathrm{r}, \mathrm{z}(\mathrm{t})=x(t)$ til t.
$\int_{0}^{1} \frac{\left|z^{\prime}(t)\right|}{1-|z(t)|^{2}} d t \geqslant \int_{0}^{1} \frac{\left|x^{\prime}(t)\right|}{1-x \mid t)^{2}} d t \geqslant \int_{0}^{1} \frac{x^{\prime}(t)}{1-x(t)^{2}} d t=\left.\log \frac{1+x|t|}{1-x(t)}\right|_{t=0} ^{1}=\log \frac{1+v}{1-r}$ with equality reached exactly when $y \equiv 0\left(y^{\prime} \equiv 0\right)$ and

$$
\left.\left|x^{\prime}(t)\right|=x^{\prime} \mid t\right) \text {, i.e. when } \gamma=[0, k] \text {, travelled ores }
$$

$\frac{\text { Hyperbolic geometry: }}{\text { Points }=\text { points in } \mathbb{D}}$
Lines: circular arcs or intervals orthogonal to $\{|z|=1\}$.
Poincare disk model of hyperbolic goomatry:

Henri Poincare

Satisfies all Euclidean Axioms except for parallels:

1. Any two points can be joined by a straight line. (This line is unique given that the points are distinct)
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as
radius and one endpoint as center.
4. All right angles are congruent.

pulls de uisuIlel
5. Any straight line segment can be extended indefinitely in a straight line.
6. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
7. All right angles are congruent.
8. Through a point not on a given straight line, one and only one line can be drawn that never meets the given line.

$$
\frac{\text { Spherical geometry }}{l_{s}(\gamma)=\int_{r} \frac{|d z|}{\left|-|z|^{2}\right.}} \begin{gathered}
\text { Can be defined the same way on } \hat{c}: \\
d_{s}\left(z_{1}, z_{2}\right)=i_{n t} e_{s}(\gamma \mid \text { thomas the samos } \\
\text { to } z_{2}
\end{gathered} \text { spherical metric! }
$$

Also satisties all Euclidean Axioms except
for parallels: lines are great circles, so there are no parallels!

Geometry
Infinitesimal length
Oriented isometries
Curvature
Geodesics
Angles of triangle

Spherical

$$
\frac{2|d z|}{1+|z|^{2}}
$$

rotations

$$
+1
$$

great circles

$$
>\pi
$$

Hyperbolic

$$
\frac{2|d z|}{1-|z|^{2}}
$$

conformal self-maps -1
circles \perp unit circle $<\pi$

